I don"t know how to solve the very first right hand side integral. I tried to let $u^2 - 1 = t$, so it becomes
$$intfrac1sqrtu^2 - 1=intfrac1sqrttfrac12u , dt = int frac1sqrtt frac12 frac1sqrtt-1 , dt,$$
which doesn"t seem to work. The correct answer appears to it is in
$$ln left(sqrtx^2 - 1 - x ight)$$
But just how do we get this?
You are watching: Integral of 1/sqrt(x^2+1)
integration ordinary-differential-equations
re-superstructure
point out
monitor
edited Sep 8 "16 in ~ 23:28

CommunityBot
1
asked Sep 8 "16 in ~ 22:16

3x89g23x89g2
7,26644 yellow badges2121 silver- badges6161 bronze title
$endgroup$
include a comment |
5 answers 5
active earliest Votes
8
$egingroup$
$$int frac dx sqrt x^ 2 -1 =int frac sinh t sinh t dt=t +C\ \ x=cosh t \ dx=sinh t \ x=frac e ^ t + e ^ -t 2 \ 2x e ^ t = e ^ 2t +1\ e ^ 2t -2x e ^ t +1=0\ e ^ t =x+sqrt x ^ 2 -1 $$
$$t=ln $$
share
mention
monitor
answer Sep 8 "16 in ~ 22:27

haqnaturalhaqnatural
21.4k88 gold badges2828 silver- badges6161 bronze title
$endgroup$
add a comment |
1
$egingroup$
LEt $u=cosh t$. You may need to uncover a formula because that arccosh x
re-publishing
cite
follow
answer Sep 8 "16 at 22:20

Empy2Empy2
47k11 yellow badge3333 silver badges8282 bronze title
$endgroup$
add a comment |
1
$egingroup$
Let $x=sec t, ; dx=sec t an t,dt$ come get
$displaystyleintfrac1sqrtx^2-1dx=intfracsec t an t an tdt=intsec t, dt=lnig|sec t+ an tig|+C=lnig|x+sqrtx^2-1ig|+C$
re-publishing
point out
monitor
answer Sep 8 "16 at 23:06

user84413user84413
25.9k11 gold badge2424 silver badges6060 bronze title
$endgroup$
include a comment |
0
See more: Welcome To Sugar Loaf Senior Living In Winona, Mn, Sugar Loaf Senior Living
$egingroup$
If the hyperbolic trigonometry is not known, we have the right to see that
$intfracdtsqrttsqrtt+1=intfracsqrtt+1sqrtt-fracsqrt tsqrtt+1dt.$
Then $z=1+frac1t$ gives $t=frac1z-1$, $dt=frac-dz(1-z)^2$ and
$frac12intfracsqrtt+1sqrtt-fracsqrt tsqrtt+1dt=frac12intfrac(1-z)dzsqrtz(1-z)^2=frac12intfracdzsqrtz(1-z)=frac14intfrac1sqrt z(1-sqrtz)+frac1sqrt z(1+sqrtz)dz.$
It comes
$intfracdusqrtu^2-1=frac12left(ln(1+sqrt z)-ln(sqrt z-1) ight)=frac12lnleft(frac1+sqrt zsqrt z-1 ight)=frac12lnleft(fracsqrt t+sqrt1+tsqrt1+t-sqrt t ight)=frac12lnleft(fracu+sqrtu^2-1u-sqrtu^2-1 ight)$
and as $lnleft(frac1u-sqrtu^2-1 ight)=ln(u+sqrtu^2-1)$, we attain $intfracdusqrtu^2-1=ln(u+sqrtu^2-1)$.
We can likewise note the $intfracdusqrtu^2-1=frac12intfracsqrtu+1sqrtu-1-fracsqrtu-1sqrt1+udu$ and take the substitution $t=fracu+1u-1$.